CNRS/C2N : Etude par microscopie à effet tunnel en ultravide de l’organisation atomique de surfaces GaAs/InAs/GaAs épitaxiées par EJM sur GaAs(001). 
Centre for Nanosciences and Nanotechnology - Marcoussis Campus
Français Anglais
Physique et Technologie des Nanostructures > Etude par microscopie à effet tunnel en ultravide de l’organisation atomique de surfaces GaAs/InAs/GaAs épitaxiées par EJM sur GaAs(001).
image 2
image 3
image 6


PHYNANO > Carbon >

Graphitization of 3C-SiC/Si: Toward Graphene-Silicon technology


The graphene is nowadays one of the most promising materials for next generation electronic devices. The graphene is a carbon bidimensional single crystal (single layer). The stacking of single graphene layers forms the graphite. The graphene was discovered for the first time by Andre GEIM, from Department of Physics of Manchester University, jointly with Konstantin NOVOSELOV. They both were awarded the Nobel Prize in 2010. The graphene has attracted a much attention these last years from academic researchers as well as industrials. This interest is strongly motivated by the fascinating and unique electronic and mass transport properties of the graphene, which make it as the new challenging material for the future nanoelectronics devices.

Up to now, two main elaboration methods have been employed to produce graphene layers. The first exploit conventional micromechanical exfoliation of isolated graphene from bulk graphite. However this method appears to be unsuitable for large-scale production of graphene-based devices. Moreover, the poor substrate quality limits the application of this method for high-frequency applications. The later method is based on the epitaxial growth of Few Graphene Layers (FLG) deposited on top of silicon carbide substrate (SiC). This method is up to now the most promising, still need to reduce the expensive coast of an industrial production.

Developing graphene synthesis methods on silicon substrate, compatible with the silicon mass production industries, will enable to drastically reduce the production coast and make the graphene more relevant for future nanoelctronics technologies. In this view, we have developed a new graphene elaboration method (thin SiC layer on Silicon). The originality of this new approach is based on the use of a thin SiC epilayer deposited on Silicon wafers as pseudo-substrate, which allow overcoming the use of expensive SiC substrate. This new method has an important technological impact because it allows reducing the production coast, linking the exceptional graphene properties with Silicon based technologies. Moreover, this method should enable to transpose the technological knowledge gained in Silicon based electronic devices to the graphene (Functionalization, devices based on graphene).

The recent results obtained by means of Angle Resolved PhotoEmission Spectroscopy (ARPES) on TEMPO beamline at SOLEIL, confirm that the graphene layer obtained following this new method has the similar intrinsic electronic properties as the classical graphene grown on SiC substrate. The team has clearly demonstrated the presence of a singularity in the graphene band structure (DIRAC Cone), which is the electronic signature of graphene layer. Complementary electron transport measurements have confirmed that the graphene elaborated following this new method has similar electronic properties as the classical graphene. Finally, the combination of microscopy techniques (LEEM, STEM, and STM) and the Angle Resolved PhotoEmission Spectroscopy (Figure 1, 2), allow to demonstrate the coherence and the direct correlation between the structural and the electronic properties of the graphene layers.

HEMT Grille
Figure 1 : STM images of the surface of graphene/3C-SiC(111) after annealing at 1250 °C; a) STM image (-1.7 V, 1 nA) of graphene/3C-SiC(111) (150 x 100 nm2 ) b) STM images (-0.05 V, 0.1 nA) (15 x 15 nm2 ) (Insert Fourier transforms (FTs) of the STM image) c) Honeycomb type structures (5 x 5 nm2) (-0.05 mV, 0.1 nA). Figure 2 : Electronic characterisation of graphene elaborated on SiC/Si pseudosubtrate: band structure dispersion measured using ARPES spectroscopy of one monolayer graphene on SiC/Si. The band structure clearly evidence close to the Fermi level a DIRAC cone singularity, signature of a 2D graphene layer.

Contacts: Abdelkarim Ouerghi (Action 2DEG)

PhDs, post-docs:

Patents:

  • Procédé de formation d’une couche de graphène à la surface d’un substrat comprenant une couche de carbure de silicium : France N° 11 58820 (30-09-2011)

  • Procédé de formation d’une couche de graphène à la surface d’un substrat comprenant une couche de silicium : France N° 11 58818 (30-09-2011)

Highlights:

Publications:

Projects:

  • ANR Blanc: Au delà du graphène: Dopage, supraconductivité et transitions de phase en 2D

    Référence de contrat : ANR Blanc
    Responsable(s) LPN : Ouerghi Abdelkarim
    Partenaire(s) : IMPMC (Jussieu), INSP (Jussieu)

    Ce projet de recherche s'intéresse à la possibilité d'induire des transitions métal-isolant ou métal-supraconducteur par dopage dans des couches ultrafines- jusqu'à la monocouche atomique- où des instabilités de charge et les singularités électroniques sont souvent exacerbées (2011 - 2014).

  • ANR Blanc: Electronique Quantique Microonde au Graphène

    Référence de contrat : ANR Blanc
    Responsable(s) LPN : Ouerghi Abdelkarim
    Partenaire(s) : LPA (ENS), IEF, IEMN

    Ce projet de recherche fondamentale s'intéresse aux propriétés dynamiques des fermions de Dirac dans le graphène qui est le matériau semi-métallique modèle pour cette physique. Le but du projet est d'exploiter ces propriétés pour réaliser des dispositifs d'électronique quantique novateurs centrés autour d'une architecture de type transistor (2010 - 2013).

  • Projet RTRA: Graphène hydrogéné : le Graphane

    Référence de contrat : Triangle de la physique
    Responsable(s) LPN : Ouerghi Abdelkarim
    Partenaire(s) : CEA, SOLEIL, ONERA

    Ce projet consiste à étudier les changements de structures et de propriétés électroniques du graphène provoqués par l'adsorption d'hydrogène (2011 - 2012).

  • Projet CMCU (Franco-Tunisien)

    Référence de contrat : CMCU
    Responsable(s) LPN : Ouerghi Abdelkarim
    Partenaire(s) : Faculté des Science Tunis

    Ce projet de recherche fondamentale s'intéresse au graphène. Le but du projet est d'étudier le dopage du graphene par des atomes magnétiques et de l'hydrogène (2010 - 2013).


Contact         Directory         How to Get to the C2N Marcoussis