Centre for Nanosciences and Nanotechnology - Marcoussis Campus
Français Anglais
Elaboration and Physics of Epitaxial Structures > III-V Nanowires
image 2
image 3
image 6


Trait horizontal

Puce Presentation

Puce Members

Puce Patents

Puce Publications

Puce Contracts and projects

Puce Past and current Internship Training

Puce Group ELPHYSE

Trait vertical

Puce Presentation


  • Fabricate nanowires of III-V materials
  • Analyze the morphological, structural, chemical, optical and transport properties of NWs
  • Study and understand the basic mechanisms of nanowire formation
  • Model nanowire growth quantitatively and predictively
  • Fabricate controlled and defect-free heterostructures in nanowires for various applications
  • Extend the current understanding of nucleation in open systems of nanometric dimensions

The interest for semiconductor nanowires (NWs) extends rapidly. This new class of nano-objects is likely to play an important role in future electronic and optoelectronic devices. NWs are also excellent vehicles for exploring the properties of one-dimensional (1D) systems. In this field, our studies have several interrelated facets. First, we aim at understanding, quantifying and modelling the basic mechanisms of NW growth, in their specific thermodynamical, kinetic and statistical aspects. We make use of this information to produce NWs with controlled geometry, structure and composition (including axial and radial heterostructures, and doping) for basic physical studies as well as for potential applications. Our investigations rely on detailed analyses of the samples, in particular by transmission electron microscopy (TEM). Specifically, we fabricate NWs by molecular beam epitaxy (MBE) in the (Al,Ga)As and In(P,As) systems using Au as a catalyst, and catalyst-free (Al,Ga)N NWs.


  • Origin of the wurtzite phase in nanowires of III-V zinc blende semiconductors
  • Crystalline phase transition induced by epitaxial burying of GaAs nanowires
  • Calculation of the critical dimensions for the plastic relaxation of axial heterostructures in nanowires
  • Nucleation antibunching in VLS growth
  • Quantum dots in nanowires for single photon sources

Wurtzite phase of a GaAs nanowire oberved by TEM
Figure 1 : Wurtzite phase of a GaAs nanowire oberved by TEM
Figure 3 : GaAs nanowires grown by MBE from an organized array of Au particles defined by electron-beam lithography


  • V. Dubrovskii, G. E. Cirlin, Saint Petersburg Academic University (Russia), Internat. Assoc. Lab. ILNACS
  • V. Zwiller, N. Akopian, Kavli Institute of Nanoscience, TU Delft (The Netherlands), PICS submitted
  • M. Tchernycheva, IEF, Orsay (France)
  • RCIQE, U. of Hokkaido (Japan)
  • J.-L. Maurice, G. Rizza, LPICM, Palaiseau

Retour sommet page

Puce Members


 Harmand Jean-Christophe  (+33) 1 69 63 60 81  
 Glas Frank  (+33) 1 69 63 60 79  

And also...

 Largeau Ludovic  (+33) 1 69 63 61 74  
 Oehler Fabrice  (+33) 1 69 63 63 76  
 Patriarche Gilles  (+33) 1 69 63 61 73  
 Travers Laurent  (+33) 1 69 63 60 65  
 Gogneau Noelle  (+33) 1 69 63 61 75  
 Mauguin Olivia  (+33) 1 69 63 61 07  
 Faini Giancarlo  (+33) 1 69 63 61 26  
 Mailly Dominique  (+33) 1 69 63 61 27  
 Ramdane Abderrahim  (+33) 1 69 63 61 50  
 Voisin Paul  (+33) 1 69 63 61 93  
 Wang Zhao-Zhong  (+33) 1 69 63 61 85  

Retour sommet page

Puce Patents

  • Substrat comprenant une couche de silicium et/ou de germanium et un ou plusieurs nanofils d'orientation perpendiculaire à la surface du substrat (N° 1256374). Déposants : Saint Gobain et CNRS, Y. Cohin, E. Sondergard, J.-C. Harmand, 1256374, (2012-07-03)
Retour sommet page

Puce Publications

Publication in journals
Publications in books
  • , F. Glas, Semiconductor nanowires I: Growth and theory (edited by A. Fontcuberta i Morral, S. A. Dayeh and C. Jagadish), in the Semiconductor and Semimetals series (Academic Press, Burlington) 93, 79 (2015)
  • , F. Glas, Wide band gap semiconductor nanowires: Vol. 1 Low-dimensionality effects and growth (éd. par V. Consonni et G. Feuillet) , 25 (2014)
  • , F. Glas, Lattice engineering: Technologies and applications, éd. par S. M. Wang (Pan Stanford Publishing, Singapore, 2012) 5, 189 (2012)
  • , J.-C. Harmand, F. Glas, G. Patriarche, M. Tchernycheva, C. Sartel, L. Liu, F. Jabeen, Advances in III-V semiconductor nanowires and nanodevices (ed. J. Li, D. Wang et R. R. LaPierre) 1, 68 (2011)
  • [PDF] , F. Glas, Mechanical stress on the nanoscale - simulation, material systems and characterization techniques (ed. M. Hanbücken, P. Müller, R. B. Wehrspohn) , 3 (2011)
Retour sommet page

Puce Contracts and projects

    Puce International Projects

      ILNACS : Nanostructures of Compound Semiconductors (Growth, properties, devices)

      Reference contract : LIA
      Coordinator, Partner(s) : F. Glas (LPN ),
      C2N leader(s): Frank Glas
      Main goals : Organize and develop scientific collaborations between the CNRS laboratories and the laboratories and institutes of the Russian Academy of Sciences based in Saint Petersburg in the domains of growth and study of the physical properties of nanostructures of compound semiconductors, and of compounds based on the latter.

      NanoEmbrace : Embracing One Dimensional Semiconductor Nanostructures

      Reference contract : IST Marie Sklodowska-Curie
      C2N leader(s): Frank Glas, Jean-Christophe Harmand
      Main goals : (1) Develop growth methods of semiconductor nanowires with predefined diameter, shape, direction of growth and crystal structure. (2) Develop theoretical models for the growth behaviour, morphology and crystal structure of nanowires in different material systems. (3) Open gateways for realization of nanowire-based structures with practical applications. (2013-2016)

      UPSTIN : ultra-low power spin transistor based on InAs nanowires

      Reference contract : ANR Internationale
      Coordinator, Partner(s) : K. Yoh (RCIQE - University of Hokkaido (Sapporo - Japan) )
      C2N leader(s): Jean-Christophe Harmand
      Main goals : To establish the basis of ultra-low-power circuit operation by achieving steep slope of gate voltage for on/off switching through the successful Datta-Das type spin transistor of semiconductor nanowires. The devices are hybrid systems consisting of ferromagnetic contacts deposited on InAs or InAs/InAsP core-shell nanowires. Coordinator: Kenji Yoh (RCIQE, University of Hokkaido, Sapporo, Japan) (2010-2013)

    Retour sommet page

    Puce International Networks

      SANDIE : Self-Assembled semiconductor Nanostructures for new Devices in photonics and Electronics

      Reference contract : Programme: FP6 – NMP- Network of Excellence
      Coordinator, Partner(s) : M. Grundman (Universite de Leipzig ),
      C2N leader(s): Aristide Lemaître, Abderrahim Ramdane
      Main goals : Quantum dot based lasers for emission at 1.3 and 1.55 µm (2004-2008)

    Retour sommet page

    Puce ANR non thématiques

      ESPADON : Engineering spins and photons from anisotropic dots in nanowires

      Reference contract : ANR générique - Défi 7 "Société de l'information et de la communication"
      Coordinator, Partner(s) : D. Ferrand (Institut Neel ), E. Bellet-Amalric (Institut Neel )
      C2N leader(s): Frank Glas
      Main goals : (2015-2019)

      HETONAN : High efficiency tandem solar cells based on III-V nanowires on silicon

      Reference contract : ANR - Défi "Energie propre, sûre et efficace"
      Coordinator, Partner(s) : A. Fave (INL ), M. Tchernycheva (IEF ), A. Kaminski-Cachopo (IMEP), D. Turover (SILSEF )
      C2N leader(s): Jean-Christophe Harmand
      Main goals : (2015-2019)

    Retour sommet page

    Puce ANR PNANO

      FILEMON35 : Fils Epitaxiés par Croissance VLS de Matériaux III-V Organisés à l’échelle Nanométrique

      Reference contract : ANR PNANO
      C2N leader(s): Jean-Christophe Harmand
      Main goals : Les principaux objectifs sont d’une part la compréhension des mécanismes qui régissent la croissance VLS, d’autre part la fabrication de nanofils fonctionnels et l’exploration de leur propriétés d’émission et de transport. (2005-2008)

    Retour sommet page

    Puce Other National Projects

      NON-STOP : Des Nanofils Nitrures à la Nanogénération Piézoélectrique

      Reference contract : Contrat Cnano
      Coordinator, Partner(s) : N. Gogneau (LPN ),
      C2N leader(s): Frank Glas, Noelle Gogneau
      Main goals : Etudier la potentialité des NFs de GaN et d’InN synthétisés par épitaxie par jets moléculaires, pour la conversion d’énergie mécanique en énergie électrique pour réaliser de piezo-générateurs performants.
      Partenaires : LGEP (Laboratoire de Génie Electrique de Paris) et IEF. (2013-2016)

      INSCOOP : III-V nanowires integration on SOI for on-chip optical connections

      Reference contract : ANR P2N
      Coordinator, Partner(s) : M. Gendry (INL ), M. Gendry (INL )
      C2N leader(s): Jean-Christophe Harmand
      Main goals : III-V nanowires integration on SOI for on-chip optical connections (2011-2014)

      BONAFO : dots in nanowires for optics

      Reference contract : ANR PNANO
      Coordinator, Partner(s) : K. Kheng (INAC / CEA ),
      C2N leader(s): Jean-Christophe Harmand
      Main goals : L’objectif est de développer la croissance d’hétérostructures dans des nanofils de semiconducteurs de gap direct, notamment des boîtes quantiques uniques, de comprendre et d’exploiter leur propriétés optiques. Partenaires: SP2M-CEA, Institut Néel-CNRS, IEF-CNRS, LPA-ENS-CNRS (2009-2011)

      TRANSFIL : Transport électronique dans des nanofils coeur-coquille de GaAs/GaAlAs et réalisation de transistors

      Reference contract : Contrat Cnano
      Coordinator, Partner(s) : J.-C. Harmand (LPN ),
      C2N leader(s): Jean-Christophe Harmand
      Main goals : (2010-2010)

    Retour sommet page
Retour sommet page

Puce Past and current Internship Training


  • Nanofils III-V sur Si pour l'intégration de fonctions optiques en microélectronique

  • F. Oehler-(2013-10-07 / 2014-10-28)
    Contact : J.-C. Harmand
    Group : Elaboration and Physics of Epitaxial Structures (ELPHYSE)

    dans le cadre du projet INSCOOP.

  • Electronic transport in core-shell nanowires

  • M. R. Ramdani-(2011-01-01 / 2013-08-31)
    Contact : J.-C. Harmand
    Group : Elaboration and Physics of Epitaxial Structures (ELPHYSE)
                Physique et Technologie des Nanostructures (PHYNANO)

    Semiconductor nanowires elaborated by catalyst-assisted growth are very flexible to fabricate complex and original heterostructures. In particular, the core-shell heterostructure allows forming an electron gas which is confined at the core/shell interface. At small core diameter, the electron gas is expected to be quasi one-dimensional (1D). Several groups study the electronic transport in nanowires or nanotubes, but very few convincing results are published, for instance on the observation of quantum interferences expected in such systems. Although the material quality is generally much better in nanowires formed by bottom-up growth as compared to those obtained by etching techniques, these nanostructures are not yet ideal and many critical issues have to be addressed to improve their characteristics: control of the crystal phase, material purity, doping efficiency, contacts, surface passivation… LPN has developed a complete process to fabricate devices from single vertically standing nanowires which include a GaAs core and a δ-doped GaAlAs shell (Fig. 1a and 1b). Their spatial location and their diameter are controlled by organizing the catalyst before growth by electron-beam lithography. Then, the nanowires are buried by undoped epitaxial GaAs (Fig. 5c). This step allows planarization, removes crystalline defects and suppresses the sidewall surface states. Metallic contacts are deposited on the emerging tips of the wire and on the highly doped substrate. Preliminary transport measurements on these original devices have revealed that the carrier gas experiences weak localization and anti-weak localization, indicating a strong spin-orbit coupling. We propose to further elucidate the different regimes of electronic transport in these nanostructures and to identify the behaviors which are related to their 1D character. To this aim, we want to modulate the carrier concentration in the channel. This can be done by introducing a doped layer in the epitaxial burying which can serve as wrap-around gate electrode. The post-doc will participate actively to the fabrication such devices and to their characterization by low-temperature magneto-transport measurements. The activity will be led by ELPHYSE and PHYNANO research groups in LPN. Bourse Cnano IdF

  • Coherent transport in nanowires

  • D. Lucot-(2010-01-01 / 2012-12-31)
    Contact : J.-C. Harmand , G. Faini
    Group : Elaboration and Physics of Epitaxial Structures (ELPHYSE)
                Physique et Technologie des Nanostructures (PHYNANO)


  • Nanowires for single photon emission

  • F. Jabeen-(2009-06-01 / 2012-05-31)
    Contact : J.-C. Harmand
    Group : Elaboration and Physics of Epitaxial Structures (ELPHYSE)


  • Croissance et analyse de nano-colonnes de cristaux III-V

  • M. Tchernycheva-(2005-10-01 / 2006-10-01)
    Contact : J.-C. Harmand , G. Patriarche
    Group : Elaboration and Physics of Epitaxial Structures (ELPHYSE)

    Des gouttelettes d’or déposées sur une surface de semiconducteur peuvent catalyser un mode de croissance particulier (appelé VLS pour vapor-liquid-solid) du semiconducteur : dans certaines conditions, il y a croissance préférentielle du semiconducteur sous les gouttes d’or, et donc formation de colonnes de semiconducteur d’un diamètre comparable à celui des gouttes d’or. Ce diamètre peut être de taille nanométrique (typiquement 50 nm). Une fois maîtrisé, ce procédé peut conduire à la fabrication de nano-dispositifs à 1 dimension. Dans le cadre de ce stage, on se propose d’étudier le régime de croissance VLS dans le cas d’ alliages III-Vs. Une chambre de croissance de III-V est couplée à une source d’évaporation d’or, permettant d’enchaîner le dépôt d’or et la croissance des III-Vs. Des caractérisations rapides telle que la microscopie à force atomique, et la microscopie électronique à balayage permettront d’optimiser la formation de ces nano-colonnes. On étudiera l’influence de l’orientation cristalline et de la nature du substrat, de même que celle des paramètres de croissance, température et flux. L’étape suivante est de réaliser ces nano-colonnes à partir d’hétérostructures III-V. Un point particulièrement critique sera l’évaluation de la raideur des interfaces obtenues dans ce mode de croissance particulier. Un autre aspect très attractif de ces nano-colonnes est la possibilité d’empiler des matériaux très contraints avec une relaxation de contrainte partielle sur les bords libres. Pour analyser finement la structure cristalline des ces objets, leurs compositions, leurs interfaces, et les aspects liés aux contraintes, on utilisera la microscopie électronique en transmission. Par ailleurs, on évaluera la possibilité de prédéfinir la taille et la localisation des gouttes d’or sur le substrat, étape indispensable pour une réelle maîtrise du procédé. A cette fin, le substrat pourra être nano-structuré par exposition à un faisceau d’ions focalisé (FIB) ou par un réseau de dislocations enterré obtenu par collage épitaxial. Enfin les premiers dispositifs pourront être réalisés pour le transport (par exemple structures à double barrière pour effet tunnel résonnant) ou pour la photonique (émission de boîtes quantiques uniques).


  • Photocathodes à nanofils

  • T. Jegorel-(2013-11-01 / 2016-11-28)
    Contact : J.-C. Harmand
    Group : Elaboration and Physics of Epitaxial Structures (ELPHYSE)

    avec Photonis.

  • Nucleation and growth mechanisms of III-V semiconductor nanowires

  • G. Priante-(2013-10-01 / 2016-11-28)
    Contact : F. Glas , J.-C. Harmand
    Group : Elaboration and Physics of Epitaxial Structures (ELPHYSE)


    FP7 Marie Curie Actions - Initial Training Network

    Job title: Doctoral Research Fellowship (PhD)

    Title: Nucleation and growth mechanisms of III-V semiconductor nanowires

    CNRS - Laboratoire de Photonique et de Nanostructures, Marcoussis, France

    Duration: 3 years

    Closing date: 15 July 2013

    Dr Frank Glas, , +33 1 6963 6079
    Dr Jean-Christophe Harmand, , +33 1 6963 6081

    Gross living allowance: 44 118 € per year plus mobility allowance. Salary is subject to deduction of social contributions and to taxes.

    For more details read this document.

  • New epitaxial platforms for nanowire growth

  • V. Kumaresan-(2013-11-01 / 2016-11-28)
    Contact : J.-C. Harmand , E. Sondergard , M. Tchernycheva
    Group : Elaboration and Physics of Epitaxial Structures (ELPHYSE)


    Location : Laboratoire de Photonique et de Nanostructures (LPN, Marcoussis), Unité mixte Saint-Gobain Recherche (SGR, Aubervilliers), Institut d’Electronique Fondamentale (IEF, Orsay).

    Scientific context :
    A major advantage of semiconductor nanowires is the possibility to integrate these nano-materials on various substrates. Large lattice mismatches with the substrate can be accommodated with no generation of extended defects in these nanostructures. This is particularly attractive for the integration of III-V photonics on Si substrates. Nanowires of high crystalline quality can even be obtained on non-crystalline substrates. These perspectives are of great interest for the III-N nitrides. Indeed, the epitaxial growth of these compounds suffers from a lack of ideal substrate (hetero-substrates are not well adapted and homo-substrates are expensive). In this context, we propose to use low-cost amorphous substrates for growing (Al)Ga(In)N nanowires of high structural quality for developing future photonic devices (LEDs or photovoltaic cells). To this end, we need arrays of uniform nanowires oriented perpendicularly to the substrate. These conditions are essential to contact nanowire ensembles and to inject or collect charge carriers uniformly.

    PhD research project :
    Starting from an amorphous substrate, we propose to elaborate thin films of polycrystalline Si with a high fiber-texture in order to control the orientation of nanowire growth. We have developed some know-how (SGR-LPN) to obtain such crystalline platforms by metal-induced-crystallization (MIC). Combined with lithography, a similar process is being developed at LPN to produce organized arrays of mono-crystalline Si nano-patches. This technology leads to the concept of nano-substrate. The objective of this PhD project is to optimize the fabrication of these nano-substrates and to use them to grow vertical and uniform nanowires of GaN. Alternative platforms made of other materials which can crystallize with a strong fiber-texture will be also explored (some metallic layers for instance). The nucleation of nanowire growth on these new epitaxial platforms will be studied thoroughly. One important target will be to obtain a single nanowire on each nano-substrate. The morphology, the crystalline structure and the optical properties of these nanowires will be investigated. The thesis will be carried out in several laboratories: St Gobain Recherche for the deposition of fiber-textured poly-crystalline layers (25%), LPN for lithography, III-N nanowire growth and structural analyses (50%), IEF for optical characterization and fabrication of test devices (25%).

    Person specification: The candidate should have:
    - a solid background in material sciences, physics of condensed matter and related areas,
    - a keen interest for experimental research and nanotechnology,
    - ability to work independently and within a research team,
    - excellent communication skills.

    Starting date : November 2013

    Contact persons :
    Jean-Christophe Harmand, , +33 (0)1 69 63 60 81
    Elin Søndergård, Elin.Sondergard@saint-gobain.com, +33 (0)1 48 39 57 51
    Maria Tchernycheva, maria.tchernycheva@u-psud.fr, +33 (0)1 69 15 40 51

  • Des Nanofils Nitrures à la Nanogénération Piézoélectrique

  • N. Jamond-(2013-11-01 / 2016-11-23)
    Contact : F. Glas , N. Gogneau
    Group : Elaboration and Physics of Epitaxial Structures (ELPHYSE)

    Dans le cadre du projet NON-STOP (C'NANO IdF) : Etudier la potentialité des NFs de GaN et d’InN synthétisés par épitaxie par jets moléculaires, pour la conversion d’énergie mécanique en énergie électrique pour réaliser de piezo-générateurs performants.

  • Substrats et catalyseurs alternatifs pour la croissance auto-organisée de nanofils

  • Y. Cohin-(2011-10-01 / 2014-09-30)
    Contact : J.-C. Harmand , E. Sondergard
    Group : Elaboration and Physics of Epitaxial Structures (ELPHYSE)


  • Photonique à nanofils semiconducteurs

  • J. Costard-(2011-12-01 / 2012-08-30)
    Contact : J.-C. Harmand , P. Senellart
    Group : Elaboration and Physics of Epitaxial Structures (ELPHYSE)
                Optic of Semiconductor nanoStructures Group (GOSS)

    La thèse se déroulera dans le cadre d’un projet ANR qui propose une stratégie originale pour faire des interconnexions optiques sur substrat de silicium. L’interconnexion est matérialisée par un guide d’onde optique réalisé dans une couche de Si sur SiO2. Un réseau de nanofils photoniques verticaux contenant une zone active émettrice (à la longueur d’onde de 1,2µm) sera réalisé sur ce guide d’onde. Ce réseau sera conçu pour former une cavité optique résonante. On cherchera à montrer que sous pompage optique, des modes de Bloch hybrides peuvent être amplifiés dans ce micro-résonateur à nanofils et se propager dans le guide Si.

Internship Training

  • Crystalline nanosubstrate for nanowire-based solar cells

  • D. Pelati-(2015-03-02 / 2015-07-31)
    Level : Master2
    Contact : A. Cattoni , F. Oehler
    Group : Photonic devices (PHODEV)
                Elaboration and Physics of Epitaxial Structures (ELPHYSE)

    Sustainable and low-carbon energy technologies will play a crucial role in the energy revolution required to mitigate climate change, and solar photovolatic energy is one of the most promising technologies since it entails no greenhouse gas emissions during operation and it consumes no or little water. In 2013, Si-wafer based PV technology accounted for about 90% of the total production with average efficiency of commercial modules of about 16% (record lab at 25%). At the same time, record efficiency for single-junction solar cell was obtained by thin-film GaAs solar cells (28,8% by Alta Device), but the prohibitive costs of the substrates limits the diffusion of such technology. Nanowires based solar cells are a promising alternative to planar devices especially for the development of III-V semiconductor based solar cells. The advantages of using nanowires are multiple, from their intrinsic light trapping properties to the short carrier collection paths that reduce parasitic resistance and recombinations. Also, due to the accommodation of strain by elastic relaxation, nanowires can be epitaxially grown on lattice-mismatched substrates. By using this property, we recently demonstrate the vertical self-catalyzed molecular beam epitaxy growth of GaAs nanowires on an amorphous substrate by using a smooth [111] fiber-textured Silicon thin film with very large grains. The [111] fiber-textured Silicon on glass was realized by low temperature crystallization of amorphous Silicon using the so called aluminum-induced crystallization method. This generic platform paves the way to the use of inexpensive substrates for the fabrication of dense ensembles of vertically standing nanowires with promising perspectives for the realization of high efficency and low-cost solar cells. The goal of this internship is to further extend this technology by realizing ordered array of crystalline nano-substrates of Germanium on glass as a platform for the epitaxial growth of ordered array of GaAs nanowires. The candidate will carry out the fabrication and the characterization of crystalline Germanium nano-substrates. The first task will be to optimize the aluminum-induced crystallization of planar Germanium films, in order to reduce the crystallization temperature and reduce the roughness of the micrometric Ge(111) grains. Subsequently, in combination with Nanoimprint lithography the candidate will fabricated ordered array of crystalline nano-substrates of Germanium for the growth of ordered array of GaAs nanowires (one nano-substrate for nanowire). The geometry of the array will be chosen in order to optimize the light trapping absorption. For this pourpose, the candidate will be also involed in the optimization by numeric simulation of the GaAs nanowires absorption.

  • Croissance et analyse de nanocolonnes III-V

  • N. Péré-Laperne-(2005-02-07 / 2005-07-31)
    Level : Master2
    Contact : J.-C. Harmand
    Group : Elaboration and Physics of Epitaxial Structures (ELPHYSE)


  • Modelling charge transfer in core-shell nanowire structures with radial doping

  • G. Louis-(2010-05-17 / 2010-09-03)
    Level : Master1
    Contact : J.-C. Harmand , P. Voisin
    Group : Elaboration and Physics of Epitaxial Structures (ELPHYSE)
                Optic of Semiconductor nanoStructures Group (GOSS)

Retour sommet page

Contact         Directory         How to Get to the C2N Marcoussis